Deep Learning for Hyperspectral Data Classification through Exponential Momentum Deep Convolution Neural Networks
نویسندگان
چکیده
منابع مشابه
Deep Convolutional Neural Networks for Hyperspectral Image Classification
Recently, convolutional neural networks have demonstrated excellent performance on various visual tasks, including the classification of common two-dimensional images. In this paper, deep convolutional neural networks are employed to classify hyperspectral images directly in spectral domain. More specifically, the architecture of the proposed classifier contains five layers with weights which a...
متن کاملEarliest Diabetic Retinopathy Classification Using Deep Convolution Neural Networks
Expanding need about finding a diabetic retinopathy Similarly as soonest might stop dream misfortune to the prolonged diabetes tolerant In spite of endured youngs. Seriousness of the diabetic retinopathy illness may be measured In light of microaneurysms, exudates detections and it evaluations Similarly as Non-proliferative(NPDR) alternately Proliferative diabetic retinopathy patient(PDR). An r...
متن کاملHyperspectral image classification via contextual deep learning
Because the reliability of feature for every pixel determines the accuracy of classification, it is important to design a specialized feature mining algorithm for hyperspectral image classification. We propose a feature learning algorithm, contextual deep learning, which is extremely effective for hyperspectral image classification. On the one hand, the learning-based feature extraction algorit...
متن کاملExponential expressivity in deep neural networks through transient chaos
We combine Riemannian geometry with the mean field theory of high dimensional chaos to study the nature of signal propagation in generic, deep neural networks with random weights. Our results reveal an order-to-chaos expressivity phase transition, with networks in the chaotic phase computing nonlinear functions whose global curvature grows exponentially with depth but not width. We prove this g...
متن کاملLearning Multiple Categories on Deep Convolution Networks
Deep convolution networks have proved very successful with big datasets such as the 1000-classes ImageNet. Results show that the error rate increases slowly as the size of the dataset increases. Experiments presented here may explain why these networks are very effective in solving big recognition problems. If the big task is made up of multiple smaller tasks, then the results show the ability ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of Sensors
سال: 2016
ISSN: 1687-725X,1687-7268
DOI: 10.1155/2016/3150632